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NOTE ON THE EFFECT OF TRANSVERSE SHEAR DEFORMATION
IN LAMINATED ANISOTROPIC PLATES
by E
E. Reissner
Department of Applied Mechanics and Engineering Sciences

UNIVERSITY OF CALIFORNIA, SAN DIEGO
La Jolla, California 92093

ABSTRACT
Derivation of two-dimensional equations for elastic deformations
of laminated anisotropic plates, based on the assumption of a Kirchhoff-
distribution of primary strains, in conjunction with the use of the Castigliano
variational principle for stresses, or a variational principle for stresses
and displacements. A discussion is given of the relation of the present work

to some earlier work.




Note on the Effect of Transverse Shear Deformation
t
in Laminated Anisotropic Plates

By E. Reissner

Introduction. The recent work by Argyris et al. [1] and by G. A
Cohen (2] on the approximate determination of transverse shear stress
coefficients for laminated anisotropic plates (and shells ) has shown the
relative complexity of the task of extending the earlier analysis of the effect
of transverse shear in isotropic homogeneous [3] as well as sandwich-type
plates [4] to the case of laminated anisotropic plates. The point of departure
of the following considerations, which were motivated by Cohen's paper, is
a brief note [6] on an earlier rational approach to the subject of transverse
shear stiffness in laminated anisotropic plates, which, for brevity's sake, was
limited to the case of plates with such .lymmetry as to allow a separate treat-
ment of transverse bending and stretching. :

A study of the contents of [2] made it appear that the results in this

paper, although quite different in appearance and derivation, should, for

t
Preparation of this report has been supported by the Office of Naval
Research and by the National Aeronautics and Space Administration,
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the symmetrical case, be in fact equivalent to the results reported in [6].
This being the case, the present brief paper;, although not presenting numerical
resultsor procedures, is thought to be of some interest from the point of view

of the development of computer methods in applied mechanics.

Briefly, the present work as well as the work in [2] and [6] starts out
with a distribution of primary stresses in laminated plates corresponding to
a linear (Kirchhoff) distribution of prir;raa;y strains, The second step in the
three papers is a determination of the associated statically consistent trans-
verse shearing stresses. The remaining step is the use of an energy
principle for the utilization of these expressions for primary and transverse
stresses for the purpose of obtaining two-dimensional constitutive equations
involving transverse shear deformations and transverse shear stress
resultants. In [6] this third step is executed, not quite as simply as it might
have been done, through an application of the writer's variational principle
for stresses and displacements [5]. In Cohen's work [2] this third step is
executed through an application of the principle of minimum complementary
energy ( variational principle for stresses). In the present reconsideration
of the problem two types of results are presented. These are associated,

respectively, with the variational principle for stresses, or with the variation:!

principle for stresses and displacements. It is found that, while Cohen's method

[2) depends on use of the stress principle, his results appear to be equivalent
to the results in [6] which depend on the use of the stress and displacement

principle.
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Stress Strain Relations and Expressions for Stresses. We consider

, x., and with thickness coordinate z.

a plate with midplane coordinates x 2

1

We designate midplane parallel stresses by 0', OZ, O, (with Ty representing
the shear stress 0,, =0,, ), and we designate transverse shearing stresses

by T ., T We assume that the deformational effects of transverse normal

| Wl 2

stress - which would here be designated by 1'3 - are negligible, and we assume
that the relevant stress strain relations for the laminated anisotropic plate are

of the form

g. = E..e. , fl = G5 (1a, b)

(TR TR

with the coefficients E'j and GXu being known functions of z,

Given the stress strain relations (la), we now introduce as a basic

assumption for the analysis to be undertaken that the distribution of face-

parallel stresses may be approximated in the form

o = E (zxj+t’j) . ()

j
with uj and ‘j being independent of z.

Equations (2) iznply as relations for stress couples and stress resultants,

M, =D .x, +4C . .,e, , N =C x, +B,,¢€ g 3a,b
1= Py vy R Vi I TR s
where
<

(B,..C.., D,) = § (1, &, 8K, 8% . (4)

ij° i’ Tij agtr e ij

We agree to write the inverted form of (3) as

x, =pIm +c’!n ¢, =c!m +B !N (5a, b)
i . e G R - Taey G L W >

Introduction of (5) into equation (2) leads to approximate expressions for face-

parallel stresses in terms of stress couples and stress resultants of the form

P
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o, = H.M,+F, N , 6

i ij ) ij j (6)
where
H. = (z p ! +c")z F, = (zc'l + B'l)l-: (N

ij kj kj' ik’ ' kj ki~ ik T .

Having equations (6), we use as associated approximate expressions for

the transverse stresses ‘l’A the equilibrium expressions

z z
T B L L P I L L I LI -

in conjunction with the conditions of vanishing L5Y for z = 4+c, It is evident from
(6) and (8) that, with suitable coefficients K and J, these expressions can be written as

: . (9
™ = EauMyu t e

Having equation (9) we now introduce, in addition to the resultants Nj and

the couples Mj' transverse shear resultants QA' and we observe that the set

Nj' Mj' QX is subject to the five two-dimensional equilibrium equations

M +M = Q

1,1 ¥ My 5 e (10a)

Nl.l*NLZ =0 , N +N =0 . (10b)

We may use equations (10) in order to express the 1'x - instead of in terms
of the twelve Mj ; and Nj .’ in terms of ten quantities only, these being the
two transverse resultants QX' and two sets of four quantities Rz and SE defined by

R, - M , R, =M, .-M » Ry = M, (lla)

prereenap—

2,1 ° (11b)

The resulting expressions for TX may be written in the form

TX = Aquu#I R. + L (12)

Ty ALY N
with the problem of the appropriate treatment of the quantities l?.2 and SZ being

of particular interest in what follows,
-4- ¢
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Bending and Stretching Uncoupled. It is sufficient for present purposes

to limit further discussion to the uncoupled problem of transverse bending, which

is given when all the coefficients EU and GMI in (1) are even functions of the

thickness coordinate z. We obtain the equations for uncoupled transverse

bending by setting

(j=o,clj=0,Fij=0.J =0.Sz=0, (13)

with the remaining plate problem now consisting of the standard equilibrium
equations (10a), in conjunction with approximate two-dimensional constitutive
equations and strain displacement relations, with these having to be consistent

with the remaining portions of equations (2), {3) and (12).

Use of the Principle of Minimum Complementary Energy. We have as
three-dimensional strain energy density expression in terms of stresses, consis-
tent with the stress strain relations (la,b)

-1 -1
Wo=W +W = gzu Oioj+*Gxufkfu - (14)
Leaving aside boundary condition considerations, we may obtain a
system of approximate two-dimensional constitutive equations by utilizing the

variational equation

C
GIII_chzdxldxz =0 , (15)

in conjunction with the equilibrium stresa expressions
g, = . - s 5 ’

§ “UMJ LAY KNMMJ.H (16a,b)
subject only to the supplementary two-dimensional equilibrium equation

Ml.ll *ZMs,xz’“z,zz =0 , (17)

-5-
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which follows from (10a) and which may be introducted into (15) by means of a
Lagrangian multiplier function w(xl,xz), as done first for the isotropic homo-
geneous case in [3].

We may alternately use the expression

Ty A% thieRs (18)

for transverse shear where, necessarily,

C C :
Fotdgutn =8 o ] Kpte win (19)

Introduction of (18) into the associated strain energy portion W_r then gives further

"

[ C
-1
j‘_cwfaz ij‘_ccxumwav +LgRpMA, Q +1 oRo)da

u"

i(xy 029y + 2Y, qQ,Rq +Zg qRp R (20)
while at the same time

c

f wyez = ”ic Ei-jl Ho Ny M Mds = %D;lele - @n
Having equations (15), (20) and (21), in conjunction with the two-dimensional

equilibrium equations (10a), we now consider the utilization of this system for

the derivation of approximate two-dimensional constitutive equations. In doing

this it is of interest to consider a-certain sub-class of cases before considering

the general problem.

Plates for which Y o

=0 and ZSQ = 0. For this class of cases we may
establish constitutive equations in the s_a-n-\e manner as in [4] by introducing the
equilibrium equations (10a) into (15) by means of three Lagrange multiplier
functions ®) (xl, xz) and w(xl. xz). so as to have as a variational equation for

the derivation of constitutive equations

-6-

-




-1
8 1 1
H[z Dij MiMj + zmelQu + QX')‘W
FMy pE My QP (M 4 M, - Qode,Jdx dx, = 0. (22)

The resulting equations are

-1 -1 -1

D.. M, = > .M. = : =

T ‘01'1 DzJ MJ ® 3 D3J Mj wl.Z + (pz’l " (23)
together with
xluQu = W'l+'¢3l ’ xquu = W.Z+'Pz . (24)

Plates for which some of the Yv_f‘-_ and ZEO are non-vanishing.

In considering the variational equation (15) for this general case, we must take
account of all or some of the terms with RE in equation (20), in a consistent

manner. This may be done without additional l:agrange multipliers by writing

the terms RE in (ZO). in terms of derivatives of the Mi in accordance with
equations (11a) and by then using the one constraint equation (17). Alternately,
we may introduce equations (11a) as constraint equations, through additional
Lagrange multipliers '}3 . If we adopt the latter procedure, we obtain as a

generalization of the system (23) and (24) the following set of constitutive equations

1j i,1 1,1 2,2

«3

Dszj * 93" '3,2*'4,1 (25)
=

DyM; = @ o480, 1= ¥,2tY

together with the two relations

xm)Qp +Y,qRq = wote, (26)

and the four relations

e el i =

gL .



Yo% *Zpghy = p - (27)

We note that equations (25) to (27), together with the equilibrium
equations (10a) and the defining relations (11a), are a system of sixteen
equations for the nine stress measures Mij' Qv. R}.‘. and seven displacement
measures w, ov, '8' If we eliminate the quantitites RL‘ and 'E' we will be left
with altogether eight equations for the Mij' Qv, w and L We refrain from listing
these equations and limit ourselves to noting the important fact that the presence
of the geometrical variables '0 in (27) means that it will now not be possible to
take account of the effect of transverse shear deformations by means of constitu-
tive equations of a form as simple as the sei (24).

A supplementary approximation. It is possible, formally, to use the
variational equation (15) for the derivation of approximate constitutive equations
without requiring that the transverse shear stress distributions in (18) are in
exact three-dimensional equilibrium with the stresses t!t in (16a) although, in
this case, one then no longer uses the principle of minimum complementary
energy but rather an ad hoc modification of this principle. One such non-rational
modification is to ignore the fact that the quantities R’Y. in (18) are defined in

terms of the M‘ i in accordance with (11a) and to treat the RZ as supplementary

free parameter functions. When this is done there is then no occasion for the

introduction of the Lagrange multiplier functions 02 and therewith the constitu-

tive equation system (25) to (27) becomes simplified by the disappearance of all

tz-terms. This fact is of particular significance insofar as equations (26) and

(27) are concerned, because it is then possible to solve (27) in the form RZ =
-1 -1

-zza Yva and to write (26) in the wanted form w’u + 0v # (Xvo - Yvﬂzﬂi‘.yot)op'

-8-
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It appears that the results reported in {2], when specialized to the case
of uncoupled stretching and bending, are in fact equivalent to what is obtained
in this particular fashion.

Use of a Variational Principle for Stresses and Displacements. Use of
the variational equation

)T

1

8
'm“x. 1% 7% % by o AR, DR AN, kG,

+( “z,z)’z - Wldz dx d¥, =0 , (28)

uz’ ” +
in place of equation (15), is known [5] to be consistent, without a priori constraints
on stress distributions and with or without independent assumptions concerning
displacements. Consequently, if we depart from (28), we may now use the strair.

energy density expression
c g s
= irp°
J  Waz = D, MM+ X, Q,Q +2Y,qQ Rg+ZoqRoRgl 29
without considering (11a) as constraint equations for the Rﬂ' Furthermore, if

we introduce as approximating expressions for displacements, consistent with

the stress expressions 0

i ° E”zuj,

By = zfpx(xl,xz) 4TI w(xl,xz) ’ (30a, b)

we then have in equation (28)

c

‘[c[“l.lal toeot(uy tu Tldz =@ M 40, M,

+(°1.2 “"2,1”’13 +(wl +W,I)Q| +(¢pz +w.z)Qz ' (31
and the Euler equations of the remaining variational problem come out to be the
three two-dimensional equilibrium equations (10a), together with constitutive
equation of the form (23), in conjunction with an abbreviated system of trans-

verse shear equations




z
p
xquo + YuﬂRﬂ o e, YVOQV + ZZORZ =0 , (32a, b)
in place of the system (26) and (27:
i We note that these results are equivalent to the results in [1], as

discussed at the end of the preceding section, and that they are also equivalent
to the results in [6], except that in this earlier work the shear stress equations

(16b) were taken, with the help of six functions R;u, in the form

*
T =

A KkjuRju ’ g (33)

in place of equations (18), with the Qv in (31) following from (33) in the form

Q =dcx.dz)a’,' e (34)
v -c Viju ju Vin ju
There occur, in connection with the use of (33) in place of (18) as
approximation for the TA' inconveniences in regard to the appearance of singular
matricesf. While it is possible to deal with thease singularities as they occur

in specific cases, without affecting the validity of the results, it is nevertheless

preferable to isolate the effect of the Qu-terml, as in equations (18).

t
The present author is indebted to Dr. Cohen for bringing this fact to his
attention.
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